Elasticsearch: The Definitive Guide Front Cover

Elasticsearch: The Definitive Guide

  • Length: 726 pages
  • Edition: 1
  • Publisher:
  • Publication Date: 2015-02-14
  • ISBN-10: 1449358543
  • ISBN-13: 9781449358549
  • Sales Rank: #189523 (See Top 100 Books)
Description

Whether you need full-text search or real-time analytics of structured data—or both—the Elasticsearch distributed search engine is an ideal way to put your data to work. This practical guide not only shows you how to search, analyze, and explore data with Elasticsearch, but also helps you deal with the complexities of human language, geolocation, and relationships.

If you’re a newcomer to both search and distributed systems, you’ll quickly learn how to integrate Elasticsearch into your application. More experienced users will pick up lots of advanced techniques. Throughout the book, you’ll follow a problem-based approach to learn why, when, and how to use Elasticsearch features.

  • Understand how Elasticsearch interprets data in your documents
  • Index and query your data to take advantage of search concepts such as relevance and word proximity
  • Handle human language through the effective use of analyzers and queries
  • Summarize and group data to show overall trends, with aggregations and analytics
  • Use geo-points and geo-shapes—Elasticsearch’s approaches to geolocation
  • Model your data to take advantage of Elasticsearch’s horizontal scalability
  • Learn how to configure and monitor your cluster in production

Table of Contents

Part I. Getting started
Chapter 1. You know, for Search…
Chapter 2. Life inside a Cluster
Chapter 3. Data in, data out
Chapter 4. Distributed document store
Chapter 5. Searching – the basic tools
Chapter 6. Mapping and analysis
Chapter 7. Full body search
Chapter 8. Sorting and relevance
Chapter 9. Distributed search execution
Chapter 10. Index Management
Chapter 11. Inside a shard

Part II. Search in depth
Chapter 12. Structured search
Chapter 13. Full text search
Chapter 14. Multi-field search
Chapter 15. Proximity matching
Chapter 16. Partial matching
Chapter 17. Controlling relevance

Part III. Dealing with human language
Chapter 18. Getting started with languages
Chapter 19. Identifying words
Chapter 20. Normalizing tokens
Chapter 21. Reducing words to their root form
Chapter 22. Stopwords: performance vs precision
Chapter 23. Synonyms
Chapter 24. Typoes and mispelings

Part IV. Aggregations
Chapter 25. High-level concepts
Chapter 26. Aggregation Test-drive
Chapter 27. Available Buckets and Metrics
Chapter 28. Building Bar Charts
Chapter 29. Looking at time
Chapter 30. Scoping Aggregations
Chapter 31. Filtering Queries and Aggregations
Chapter 32. Sorting multi-value buckets
Chapter 33. Approximate Aggregations
Chapter 34. Significant Terms
Chapter 35. Controlling memory use and latency
Chapter 36. Closing thoughts

Part V. Geolocation
Chapter 37. Geo-points
Chapter 38. Geohashes
Chapter 39. Geo-aggregations
Chapter 40. Geo-shapes

Part VI. Modeling your data
Chapter 41. Handling relationships
Chapter 42. Nested objects
Chapter 43. Parent-child relationship
Chapter 44. Designing for scale

Part VII. Administration, Monitoring and Deployment
Chapter 45. Monitoring
Chapter 46. Production Deployment
Chapter 47. Post-Deployment

To access the link, solve the captcha.