GPU Parallel Program Development Using CUDA
- Length: 476 pages
- Edition: 1
- Language: English
- Publisher: Chapman and Hall/CRC
- Publication Date: 2018-02-16
- ISBN-10: 1498750753
- ISBN-13: 9781498750752
- Sales Rank: #330555 (See Top 100 Books)
GPU Parallel Program Development using CUDA teaches GPU programming by showing the differences among different families of GPUs. This approach prepares the reader for the next generation and future generations of GPUs. The book emphasizes concepts that will remain relevant for a long time, rather than concepts that are platform-specific. At the same time, the book also provides platform-dependent explanations that are as valuable as generalized GPU concepts.
The book consists of three separate parts; it starts by explaining parallelism using CPU multi-threading in Part I. A few simple programs are used to demonstrate the concept of dividing a large task into multiple parallel sub-tasks and mapping them to CPU threads. Multiple ways of parallelizing the same task are analyzed and their pros/cons are studied in terms of both core and memory operation.
Part II of the book introduces GPU massive parallelism. The same programs are parallelized on multiple Nvidia GPU platforms and the same performance analysis is repeated. Because the core and memory structures of CPUs and GPUs are different, the results differ in interesting ways. The end goal is to make programmers aware of all the good ideas, as well as the bad ideas, so readers can apply the good ideas and avoid the bad ideas in their own programs.
Part III of the book provides pointer for readers who want to expand their horizons. It provides a brief introduction to popular CUDA libraries (such as cuBLAS, cuFFT, NPP, and Thrust),the OpenCL programming language, an overview of GPU programming using other programming languages and API libraries (such as Python, OpenCV, OpenGL, and Appleās Swift and Metal,) and the deep learning library cuDNN.
Table of Contents
Part I: Understanding CPU Parallelism
Chapter 1 Introduction To Cpu Parallel Programming
Chapter 2 Developing Our First Parallel Cpu Program
Chapter 3 Improving Our First Parallel Cpu Program
Chapter 4 Understanding The Cores And Memory
Chapter 5 Thread Management And Synchronization
Part II: GPU Programming Using CUDA
Chapter 6 Introduction To Gpu Parallelism And Cuda
Chapter 7 Cuda Host/Device Programming Model
Chapter 8 Understanding Gpu Hardware Architecture
Chapter 9 Understanding Gpu Cores
Chapter 10 Understanding Gpu Memory
Chapter 11 Cuda Streams
Part III: More To Know
Chapter 12 Cuda Libraries
Chapter 13 Introduction To Opencl
Chapter 14 Other Gpu Programming Languages
Chapter 15 Deep Learning Using Cuda