Hands-On Image Processing with Python Front Cover

Hands-On Image Processing with Python

  • Length: 492 pages
  • Edition: 1
  • Publisher:
  • Publication Date: 2018-11-30
  • ISBN-10: 1789343739
  • ISBN-13: 9781789343731
  • Sales Rank: #1216403 (See Top 100 Books)
Description

Explore the mathematical computations and algorithms for image processing using popular Python tools and frameworks.

Key Features

  • Practical coverage of every image processing task with popular Python libraries
  • Includes topics such as pseudo-coloring, noise smoothing, computing image descriptors
  • Covers popular machine learning and deep learning techniques for complex image processing tasks

Book Description

Image processing plays an important role in our daily lives with various applications such as in social media (face detection), medical imaging (X-ray, CT-scan), security (fingerprint recognition) to robotics & space. This book will touch the core of image processing, from concepts to code using Python.

The book will start from the classical image processing techniques and explore the evolution of image processing algorithms up to the recent advances in image processing or computer vision with deep learning. We will learn how to use image processing libraries such as PIL, scikit-mage, and scipy ndimage in Python. This book will enable us to write code snippets in Python 3 and quickly implement complex image processing algorithms such as image enhancement, filtering, segmentation, object detection, and classification. We will be able to use machine learning models using the scikit-learn library and later explore deep CNN, such as VGG-19 with Keras, and we will also use an end-to-end deep learning model called YOLO for object detection. We will also cover a few advanced problems, such as image inpainting, gradient blending, variational denoising, seam carving, quilting, and morphing.

By the end of this book, we will have learned to implement various algorithms for efficient image processing.

What you will learn

  • Perform basic data pre-processing tasks such as image denoising and spatial filtering in Python
  • Implement Fast Fourier Transform (FFT) and Frequency domain filters (e.g., Weiner) in Python
  • Do morphological image processing and segment images with different algorithms
  • Learn techniques to extract features from images and match images
  • Write Python code to implement supervised / unsupervised machine learning algorithms for image processing
  • Use deep learning models for image classification, segmentation, object detection and style transfer

Who this book is for

This book is for Computer Vision Engineers, and machine learning developers who are good with Python programming and want to explore details and complexities of image processing. No prior knowledge of the image processing techniques is expected.

Table of Contents

  1. Getting started with Image Processing
  2. Sampling Fourier Transform
  3. Convolution and Frequency domain Filtering
  4. Image Enhancement
  5. Image Enhancement using Derivatives
  6. Morphological Image Processing
  7. Extracting Image Features and Descriptors
  8. Image Segmentation
  9. Classical Machine Learning Methods
  10. Learning in Image Processing – Image Classification with CNN
  11. Object Detection, Deep Segmentation and Transfer Learning
  12. Additional Problems in Image Processing
To access the link, solve the captcha.