Mastering Social Media Mining with Python
- Length: 338 pages
- Edition: 1
- Language: English
- Publisher: Packt Publishing
- Publication Date: 2016-07-29
- ISBN-10: 1783552018
- ISBN-13: 9781783552016
- Sales Rank: #1225112 (See Top 100 Books)
Acquire and analyze data from all corners of the social web with Python
About This Book
- Make sense of highly unstructured social media data with the help of the insightful use cases provided in this guide
- Use this easy-to-follow, step-by-step guide to apply analytics to complicated and messy social data
- This is your one-stop solution to fetching, storing, analyzing, and visualizing social media data
Who This Book Is For
This book is for intermediate Python developers who want to engage with the use of public APIs to collect data from social media platforms and perform statistical analysis in order to produce useful insights from data. The book assumes a basic understanding of the Python Standard Library and provides practical examples to guide you toward the creation of your data analysis project based on social data.
What You Will Learn
- Interact with a social media platform via their public API with Python
- Store social data in a convenient format for data analysis
- Slice and dice social data using Python tools for data science
- Apply text analytics techniques to understand what people are talking about on social media
- Apply advanced statistical and analytical techniques to produce useful insights from data
- Build beautiful visualizations with web technologies to explore data and present data products
In Detail
Python is the programming language of choice for data scientists to prototype, visualize, and run data analyses on small- and medium-sized data sets. Countless businesses are turning to Python to solve the problems of understanding consumer behavior and turning raw data into actionable customer insights.
This book will help you acquire and analyze data from leading social media sites. It will show you how to employ scientific Python tools to mine popular social websites such as Facebook, Twitter, Quora, and more.
We will explore the Python libraries and cover each aspect of social media mining. We will teach you to develop data mining tools that use a social media API and how to create your own data analysis projects using Python.
Table of Contents
Chapter 1. Social Media, Social Data, and Python
Chapter 2. #MiningTwitter – Hashtags, Topics, and Time Series
Chapter 3. Users, Followers, and Communities on Twitter
Chapter 4. Posts, Pages, and User Interactions on Facebook
Chapter 5. Topic Analysis on Google+
Chapter 6. Questions and Answers on Stack Exchange
Chapter 7. Blogs, RSS, Wikipedia, and Natural Language Processing
Chapter 8. Mining All the Data!
Chapter 9. Linked Data and the Semantic Web